SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:PUTTUR (AUTONOMOUS)
Siddharth Nagar, Narayanavanam Road - 517583
OUESTION BANK (DESCRIPTIVE)
Subject with Code: AT \& CD(20CS0903) Course \& Branch: B.Tech - CSM,CIC
Year \&Sem: III-B.Tech \& I-Sem
Regulation: R20

UNIT -I
 FINITE AUTOMATA AND REGULAR LANGUAGES

UNIT -II
 CONTEXT FREE GRAMMAR AND TURING MACHINE

UNIT -III
 LEXICAL ANALYSIS AND TOP DOWN PARSING

1		Explain the phases of a compiler with neat diagram.	[L2][CO2]	[12M]
2	a	Explain in detail about the role of lexical analyzer in Compiler Design.	[L2][CO1]	[6M]
	b	Write about input buffering?	[L3][CO1]	[6M]
3	a	Explain LEX Tool with the structure of Lex Program?	[L2][CO3]	[8M]
	b	Illustrate Application of compiler technology	[L3][CO1]	[4M]
4	a	State what is meant by derivation and parse tree with examples.	[L1][CO4]	[4M]
	b	Construct Leftmost and Rightmost derivation and derivation tree for the string 0100110 $\begin{aligned} & \mathrm{S} \rightarrow 0 \mathrm{~S} / 1 \mathrm{AA} \\ & \mathrm{~A} \rightarrow 0 / 1 \mathrm{~A} / 0 \mathrm{~B} \\ & \mathrm{~B} \rightarrow 1 / 0 \mathrm{BB} \\ & \hline \end{aligned}$	[L6][CO4]	[8M]
5	a	Describe the procedure of eliminating Left recursion.	[L1][CO1]	[6M]
	b	Eliminate left recursion for the following grammar $\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} \\ & \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} / \mathrm{F} \\ & \mathrm{~F} \rightarrow(\mathrm{E}) / \mathrm{id} \end{aligned}$	[L5][CO1]	[6M]
6	a	Explain Left recursion and Left factoring.	[L2][CO1]	[6M]
	b	Perform left factor for the grammar $\mathrm{A} \rightarrow \mathrm{abB} / \mathrm{aB} / \mathrm{cdg} / \mathrm{cdeB} / \mathrm{cdfB}$	[L3][CO4]	[6M]
7	a	Describe the role of Compiler	[L1][CO1]	[4M]
	b	Design the recursive decent parser for the following grammar? $\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} \\ & \mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{~F} / \mathrm{F} \\ & \mathrm{~F} \rightarrow(\mathrm{E}) / \mathrm{id} \end{aligned}$	[L6][CO3]	[8M]
8	a	Illustrate the rules to be followed in finding the FIRST and FOLLOW.	[L3][CO1]	[4M]
	b	Find FIRST and FOLLOW for the following grammar? $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T}$ $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} / \mathrm{F} \quad \mathrm{F} \rightarrow$ (E)/id	[L3][CO2]	[8M]
9		Consider the grammar $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T}, \mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} / \mathrm{F}, \quad \mathrm{F} \rightarrow(\mathrm{E})$ id Design predictive parsing table and check given grammar is LL(1) Grammar or not?	[L6][CO3]	[12M]
10		Consider the grammar $\mathrm{E} \rightarrow \mathrm{TE}^{1}$ $\mathrm{E}^{1} \rightarrow+\mathrm{TE}^{1}\left\|-\mathrm{TE}^{1}\right\| \varepsilon$ $\mathrm{T} \rightarrow \mathrm{FT}^{1}$ $\mathrm{~T}^{1} \rightarrow * \mathrm{FT}^{1}\left\|/ \mathrm{FT}^{1}\right\| \varepsilon$ $\mathrm{F} \rightarrow \mathrm{GG}^{1}$ $\mathrm{G}^{1} \rightarrow \wedge / \varepsilon$ $\mathrm{G} \rightarrow(\mathrm{F}) /$ id Calculate FIRST and FOLLOW for the above grammar	[L4][CO2]	[12M]

UNIT -IV
BOTTOM-UP PARSING AND SEMANTIC ANANLYSIS

1	a	Explain about handle pruning	[L2][CO1]	[6M]
	b	Summarize about SLR parsing	[L2][CO1]	[6M]
2	a	Describe bottom up parsing	[L1][CO2]	[4M]
	b	Differences between SLR,CLR, LALR parsers	[L4][CO2]	[8M]
3		Prepare Shift Reduce Parsing for the input string using the grammar $\begin{aligned} & \mathrm{S} \rightarrow(\mathrm{~L}) \mid \mathrm{a} \\ & \mathrm{~L} \rightarrow \mathrm{~L}, \mathrm{~S} \mid \mathrm{S} \end{aligned}$ a) $(a,(a, a))$ b) (a, a)	[L6][CO3]	[12M]
4	a	Define augmented grammar.	[L1][CO2]	[2M]
	b	Construct the $\operatorname{LR}(0)$ items for the following Grammar $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{~L}=\mathrm{R} \\ & \mathrm{~S} \rightarrow \mathrm{R} \\ & \mathrm{~L} \rightarrow * \mathrm{R} \\ & \mathrm{~L} \rightarrow \mathrm{id} \\ & \mathrm{R} \rightarrow \mathrm{~L} \end{aligned}$	[L6][CO3]	[10M]
5		Construct CLR Parsing table for the given grammar $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{CC} \\ & \mathrm{C} \rightarrow \mathrm{aC} / \mathrm{d} \end{aligned}$	[L6][CO3]	[12M]
6		Design the LALR parser for the following Grammar $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{AA} \\ & \mathrm{~A} \rightarrow \mathrm{aA} \\ & \mathrm{~A} \rightarrow \mathrm{~b} \end{aligned}$	[L6][CO3]	[12M]
7	a	Define YACC parser in Syntax Analysis.	[L1][CO3]	[2M]
	b	Explain in detail about YACC Parser generator tool.	[L2][CO3]	[10M]
8	a	Explain syntax directed definition with simple examples	[L2][CO2]	[6M]
	b	Describe in detail the Translation scheme of SDD.	[L2][CO2]	[6M]
9	a	Define a syntax-directed translation and explain with example.	[L2][CO2]	[6M]
	b	Give the evaluation order of SDT with an example.	[L5][CO2]	[6M]
10		Discuss Type Checking with suitable examples.	[L2][CO4]	[12M]

UNIT -V
 CODE OPTIMIZATION AND CODE GENERATION

1		Analyse different types of Intermediate Code with an example.	[L4][CO5]	[12M]
2		Explain Representation of Three Address Codes with suitable Examples	[L2][CO5]	[12M]
3		Produce quadruple, triples and indirect triples for following expression: $(\mathrm{x}+\mathrm{y}) *(\mathrm{y}+\mathrm{z})+(\mathrm{x}+\mathrm{y}+\mathrm{z})$	[L6][CO5]	[12M]
4	a	Discuss function preserving transformations.	[L2][CO6]	[6M]
	b	Describe about loop optimization technique .	[L2][CO5]	[6M]
5		Explain the peephole optimization Technique with examples.	[L2][CO5]	[12M]
6	a	Define and Show Dead-code elimination with example.	[L1][CO4]	[6M]
	b	List and explain the Issues in the design of a code generator	[L2][CO6]	[6M]
7	a	Analyse the different forms in target program.	[L4][CO6]	[6M]
	b	Explain the target machine in code generator.	[L2][CO6]	[6M]
8	a	Define flow Graph	[L1][CO4]	[2M]
	b	Interpret optimization techniques on Basic Blocks with simple examples?	[L3][CO5]	[10M]
9	a	Analyze Simple code generator	[L4][CO6]	[6M]
	b	Evaluate Register allocation and register assignment techniques.	[L5][CO6]	[6M]
10	a	Create the DAG for following statement. $\mathrm{a}+\mathrm{b}^{*} \mathrm{c}+\mathrm{d}+\mathrm{b}^{*} \mathrm{c}$	[L6][CO6]	[4M]
	b	Construct the DAG for the following basic blocks 1. $\mathrm{t} 1:=4 * \mathrm{i}$ 2. $\mathrm{t} 2:=\mathrm{a}[\mathrm{t} 1]$ 3. $\mathrm{t} 3:=4 * \mathrm{i}$ 4. $\mathrm{t} 4:=\mathrm{b}[\mathrm{t} 3]$ 5. $\mathrm{t} 5:=\mathrm{t} 2 * \mathrm{t} 4$ 6. $\mathrm{t} 6:=$ prod +t 5 7. prod:=t6 8. $\mathrm{t} 7:=\mathrm{i}+1$ 9. $i=t 7$ if $\mathrm{i}<=20$ goto 1	[L6][CO6]	[8M]

Prepared by:

1. B Pavan kumar

Assoc. Prof./CSE

